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Abstract

This paper studies optimal mitigation and testing during a pandemic in the presence of
partial information. We develop a stylized dynamic epidemiological model where the true
number of infected can only be partially inferred from two noisy signals: hospitalization and
positivity rate. An egalitarian planner chooses the level of mitigation and testing, respectively
affecting the infection rate and signal noise, at some economic cost. We first show that the
planner is willing to pay a significant “information premium” to eliminate the uncertainty
by extensive testing. However, if testing is prohibitively costly, then a stringent mitigation
is optimal, because it partially replaces testing as an information acquisition device. Such
policies were often criticized as excessive at the onset of the COVID-19 pandemic. We argue
that this “optimal overreaction” is a result of extreme costs of policy mistakes—such as high
future casualties—and not an aversion to risk.

JEL Codes: H12, E65, I18
Keywords: Mitigation, Testing, Partial Information, Bayesian Updating, Particle Fil-
tering, COVID-19

∗We are grateful to Claustre Bajona, Jesse Matheson, Arthur Sweetman and two anonymous referees for their
invaluable comments. We have also greatly benefited from the participants’ feedback in the Canadian Health Eco-
nomics Study Group meetings, 55th Annual Meetings of the CEA, and the Pandemic Workshop at TMU’s Depart-
ment of Economics. The quantitative part of this paper was conducted using the resources of Compute Ontario
(computeontario.ca) and Compute Canada (www.computecanada.ca). The authors acknowledge TMU’s Faculty of
Arts for its financial support. The views expressed are those of the authors.

mailto:k.eslami@ryerson.ca
mailto:hyunju.lee@ryerson.ca


1 Introduction

Many policymakers, throughout the world, reacted to the advent of COVID-19 pandemic at the
starting months of 2020 by pursuing non-pharmaceutical interventions. Such policies ranged
from declaring states of emergency, enacting mandatory social distancing measures, locking
down parts of economies, to issuing strict stay-at-home orders. Economists, using models that
are fine-tuned to match propagation patterns of the disease over the course of the pandemic, have
argued that the economic costs of such mitigation policies dominate their benefits in saving lives
and livelihoods of people.

Ex post, with enough data on public health policy at different stages of the pandemic and in
different economies, there is evidence in support of such claims. However, as we argue in this
paper, policymakers’ reactions to COVID-19 pandemic cannot be reasonably judged from the
lens of historical data that we have after the fact. This is especially true in the earlier stages
of the pandemic when every decision was made in an aura of uncertainty. We claim that any
evaluation of public health policy in the face of such unprecedented health crises must account
for the information limitations that planners may face and, in turn, for the signalling role of
policy—non-pharmaceutical interventions and testing, in this case.

In order to demonstrate and quantify the potential information value of such policies, we develop
a model of disease propagation and mitigation under partial information. We consider a simple
neoclassical economy in the context of a compartmental epidemiological model in which other-
wise identical individuals are either susceptible to a disease, infected by it, or in the hospitals. We
consider the problem of a planner in this setting who seeks to maximize the equally weighted
expected lifetime utility of these risk-averse individuals, but cannot directly observe the actual
number of infected and susceptible people.

In the model, the planner receives two noisy signals in each period which are correlated with
the true number of infected in the economy, namely hospitalization and positivity rate. While the
planner has no control over the standard error of the noise associated with the first signal, she
can improve the accuracy of the second signal at a (convex) cost. We also assume that the planner
can directly control the infection rate in the economy through an instrument—which we broadly
refer to as the mitigation policy—at the cost of lowering economic productivity.

Conceptually, one can think of the first signal as the information coming from all sources that the
planner has no control over. The most obvious, and perhaps the most important, of such signals
is the number of people who go to hospitals in each period (for either out- or in-patient visits
as a result of COVID-19 symptoms). As such, while we intentionally try to be stylized in our
modelling exercise, we loosely refer to this first signal as the number of hospitalized henceforth.
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The second signal consists of any information over which the planner has some control. The most
straightforward source of such a signal is testing. Therefore, from now on, we refer to its source
as testing and to its realization as the positivity rate.

We quantify our model using data from the province of Ontario, Canada. Using data on hospital-
ization, positivity rate, and mobility, we estimate a set of parameters, including the variance of
signal noise, and eventually the evolution of the infected population based on our model, using
particle filtering.

In our first set of results, we show that a planner who is only partially informed about the actual
number of infected optimally overreacts to the pandemic—a term we reserve to indicate a mitiga-
tion policy that is more restrictive than the unconstrained optimum under full information, due to
planner’s information constraints. These results hold under reasonable values for initial beliefs
and when testing is prohibitively costly—for instance, due to the lack of testing technology or
capacity in the earlier stages of the pandemic.1

Intuitively, in addition to controlling the spread of the disease, mitigation plays the indirect role
of reducing the variance of planner’s beliefs in the future about the actual number of infected
in our environment. That is, mitigation also serves as an information acquisition device for the
planner. This indirect effect is the main force behind the perceived overreaction in our results.
However, the underlying mechanism is not a trivial aversion to risk on the part of the planner.
If anything, our quantitative results suggest that the planner’s value function is convex in the
underlying number of infected, when there is no uncertainty, and, consequently in the priors in
the presence of uncertainty.

As such, the planning value, at the beginning of each period, is non-monotone in the variance
of priors. The shape of this dependence, however, is highly dependent on the realization of the
hospitalized population. We show that a signal that severely contradicts a planner’s underlying
beliefs entails extreme costs to an uncertain planner. As a result, she tries to avoid such mistakes.
Interestingly, when the initial uncertainty is too high but the information content of signals is
also high, our planner might decide to delay mitigation until enough signals are received, in an
attempt to avoid policy mistakes.

Under our parameter estimates using Ontario’s data, our model can account for the policy re-
sponse to the arrival of first cases in the province reasonably well. Under the assumption that the
planner had moderate uncertainty about the actual number of infected, our model suggests that

1. When testing is prohibitively costly, the second signal effectively loses its information content and the economy
boils down to one with a single signal—namely, hospitalization.

3



at least 20% of the initial response could be attributed to the information role of mitigation.

Somewhat expectedly, when the planner underestimates the initial prevalence of the infection,
the initial overreaction is up to 15 percentage points more pronounced. What is interesting is that,
under our estimated parameters, this initial overreaction is compensated by a rapid reopening of
the economy.2

To explore the importance of information to the planner further, we consider a counterfactual
scenario in which the cost of testing is steep at the onset, but still affordable. Our model suggests
that a planner under partial information is willing to give up as much as 17% of output in a
single day to eliminate almost all of her uncertainty. This policy is so costly that the planner can
no longer afford enacting any mitigation policy at the beginning, leading to a slight increase in
cases. However, this is an information premium that the planner is willing to pay to avoid policy
mistakes.

Relation to the Literature First and foremost, this paper connects the expansive literature on
the economics of information and learning to that on the economics of pandemics.

The arrival of the COVID-19 pandemic led to a revival of interest in the economics of pandemics.
By combining existing economic models with variations of epidemiological models of disease
propagation, many economists have studied the optimal mitigation policies under various as-
sumptions. Two important examples, which this paper builds upon, are Alvarez, Argente, and
Lippi (2021) and Jones, Philippon, and Venkateswaran (2021). To the best of our knowledge, how-
ever, none of such models consider the importance of uncertainty and learning, on the part of
policymakers, at the earlier months of the pandemic.

In this paper, we provide a first-cut attempt at extending this literature to incorporate the role of
ex ante uncertainty on the optimal choice of policy. In this sense, this paper is best viewed as an
investigation of the “value of information,” as defined by Gollier (2001), during a pandemic, when
policy is made under significant uncertainty.

In this sense, this paper is also related to a literature in epidemiology and economic that has
emphasized data inaccuracies and the best choice of signals to guide public health policy (see
Brodeur et al. 2021 for an extensive survey), but without models featuring information frictions.
By combining the epidemiological model with a rich tradition in macroeconomics, particularly in
the study of optimal monetary and fiscal policies under uncertainty (for example, Lucas Jr 1972;

2. These two observations combined can account for Glover et al. (2020)’s criticism of the public health policy in
the U.S., which they argue was excessive at the beginning and lifted prematurely.
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Townsend 1983; Nimark 2008; Angeletos and Pavan 2009; Melosi 2017), our paper complements
this literature by exploring the theoretical implications of such imperfect information on public
policy.

In addition, by proposing an estimation method based on our theoretical framework, we con-
tribute to the empirical literature that focuses on using imperfect measures of infection preva-
lence. Subramanian, He, and Pascual (2021) is just one related example in this literature, estimat-
ing the asymptomatic infection using observed cases, based on an epidemiological model.

The literature in the economics of pandemics has emphasized the role of testing as a mitigation
measure in itself. E.g., Berger et al. (2022) and Piguillem and Shi (2022) propose epidemiological
models with testing and study economic outcomes under different policies. In their papers, tests
are used to identify infected individuals in the presence of asymptomatic cases, but there is no
learning process about the true number of infected by the planner as in our paper. Chari, Kir-
palani, and Phelan (2020), Atkeson et al. (2020), Cleevely et al. (2020), Gollier and Gossner (2020),
Eberhardt, Breuckmann, and Eberhardt (2020), Wells et al. (2021) are examples that introduce
novel test and quarantine strategies, but their focus is not on the optimal planning problem with
partial information as in our paper. Through its emphasis on the significance of partial informa-
tion, our framework underlines the informational role of testing during an epidemic—a role that
has mostly been overlooked before.

The rest of this paper is organized as follows: In Section 2, we present the evidence that has
motivated this paper. Section 3 is dedicated to a detailed description of the economy, informa-
tion structure and the planning problem under consideration. Section 4 presents our quantitative
exercise: In section 4.1, we show how we use the model’s intuition, together with a novel esti-
mation method, to find the actual number of infected and, in turn, the parameters of the model
using data from the province of Ontario, Canada. Sections 4.2, 4.3 and 4.4 solve the model for the
estimated parameters under three scenarios: full information; when testing is not available at the
beginning; and when testing is available from the onset. We conclude in section 5.

2 A Motivating Observation

After the fact, with enough data on public health policy at different stages of the pandemic and in
different economies, there is evidence in support of critics who blame governments for excessive
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policy reaction to the pandemic at its onset.3

In this section, we formally characterize this observation as a motivation for our model and its
predictions throughout this paper. Using mobility data from the province of Ontario, Canada, as a
proxy for all mitigation measures in place at any point since the onset of the pandemic (February,
2020) to the end of third wave of COVID-19 (June, 2021), we provide evidence in support of
excessive application of mitigation policies.4 We show that the reduction of mobility at the onset
of the pandemic was the most severe, even though the hospitalized population and confirmed
positives were the lowest compared to the subsequent “waves” of the infectious disease.5

The dashed blue line in figure 1 depicts the normalized mobility data, from Google COVID-19
Community Mobility Reports, where the pre-pandemic level mobility is normalized to one.6 The
solid orange line in this figure illustrates the hospitalization rate, from the Government of Ontario,
as a percentage of hospitalized patients with COVID-19 among the populations of ages 30 and
over.

As the figure suggests, the mobility measure collapsed sharply to less than 40% of its pre-pandemic
level at the very onset of the pandemic in April, 2020, which we know as the first wave by now.
In the subsequent second and third waves—marked by an acceleration of infection in December,
2020, and April, 2021, respectively—the mobility measures decreased but not as sharply as during
the first wave. While the mobility measure never fully recovered to the pre-pandemic level of
one, just before the beginning of the second wave it reached to nearly 80% of the pre-pandemic
level. In the subsequent second and third waves, the mobility measure declined by less than 30
and 20 percentage points, respectively, which is in stark contrast to a more than 60 percentage
point plunge in mobility during the first wave.

3. In the U.S.,e.g., in a 19-day period between March 19, 2020, to April 7, 42 states issued strict stay-at-home
orders (Murray and Murray 2020). In addition, on March 16th, federal guidelines for social distancing for a 15-day
period were announced (Barrios and Hochberg 2020). These initial mandates were then gradually lifted—perhaps,
as Glover et al. (2020) note, sooner than optimal—never to be enacted again, despite rising case numbers in many
states. In the U.K., strict stay-at-home orders were issued on March 23, 2020. These restrictions, however, were
almost entirely lifted by July 1, and never enacted again, despite a considerable rise in case numbers as reported by
the U.K. government.

4. While not a perfect measure, mobility data has been used extensively in the economic literature as a proxy
for all mitigation measures in place in a given economy. For instance, Barrios and Hochberg (2020) and Allcott
et al. (2020) use mobility data to document a significant relationship between individuals’ partisan views and their
adherence to mitigation measures. Simonov et al. (2020), Bursztyn et al. (2020), and Ash et al. (2020) are among
examples that document the effect of news outlet exposure on enforceability of mitigation using similar measures.

5. At the time of updating this draft, restrictions imposed to contain the Omicron variant were faced with similar
criticisms.

6. We take a simple average of retail and recreation and workplace.
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Figure 1. Hospitalization and Mobility in Ontario,
Feb, 2020–Jun, 2021

Source: Google COVID-19 Community Mobility Reports and Government of
Ontario.

These observations confirm the claims that, compared to the later waves, the province of Ontario
pursued and enforced significantly stricter mitigation measures, including a state of emergency,7

in response to the first wave, when uncertainty was at its heights, even though infection was not
nearly as widespread as in the subsequent waves. This excessive reaction—which is in line with,
e.g., Glover et al. (2020)’s results—motivates our theory of “overreaction.”

In the remainder of the paper, we examine what fraction of this excessive reaction—that is a
more restrictive mitigation policy than the unconstrained optimum, which may or may not have
been optimal—can be justified as an (optimal) overreaction—which, as mentioned in the introduc-
tion, indicates a constrained optimum—under differing assumption on the underlying information
structure.

3 The Model

Consider an economy in discrete time, consisting of a continuum of individuals of initial measure
N0 at time t = 0. People are identical, except for their state of health with regard to a viral disease.

7. As announced by the Government of Ontario on March 17, 2020.
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At each date t, of the total population in the economy, Nt, measure St are susceptible and at the
risk of contracting the disease, and measure It are infected.

Absent mitigation, each infected person infects β susceptible individuals on average in each pe-
riod. On the other hand, infected people recover from the disease at a rate γ per period.8 Recovery
can be in the form of reentering into the susceptible population or succumbing to the disease.9

In each period t, fraction θ of the infected population plus a white noise end up in hospitals:

Ht = θIt + εt, (1)

where εt ∼ N (0, ν).10 Of the hospitalized population in period t, ht, a total of φ (ht) die at the
end of period.11

Any individual who is not hospitalized produces w units of a perishable consumption good in
each period.12 An individual’s period utility from the consumption of this consumption good is

u (c) = b+

(
c1−η − 1

1− η

)
, η > 0. (2)

An individual’s preferences over a stream of consumption take the additively separable expected
utility form with discount rate ρ ∈ (0, 1). We normalize the utility upon death to zero.13

8. Note that 1/γ will be the average duration of disease—in terms of the length of one period—in the model. The
ratio β/γ, known as the reproduction ratio, characterizes the propagation rate of the disease in society.

9. Unlike different variants of the common epidemiological SIR model that have been widely used in economics,
we do not have a “recovered” state in our economy under which individuals are immune to the disease. While there is
evidence that individuals recovered from SARS-CoV-2 infection are at the risk of contracting it again, the duration of
partial immunity is not yet determined. Though the possibility of instantaneous reinfection is an inaccurate assump-
tion, it serves an important technical purpose in our analysis which will become clearer later on. See appendix D
and the end of section 3.1 for a detailed discussion.

10. Even though this formulation is necessary for the analytic tractability of our model, it introduces the possibility
of receiving negative hospitalization signals, creating a potential gap between our theoretical and empirical frame-
works. While such negative signals never occur in our numerical simulations, as you will see, the mere possibility
of such observations can still affect the optimal policy through their effect on planner’s beliefs. In our benchmark
numerical analysis, we handle this issue by truncating negative hospitalization signals at H = 0. As we discuss in
our online appendix, a numerical robustness test in which such negative signals are allowed, but the planner never
assigns positive weights to negative infection, slightly amplifies our main results.

11. At this point, the only restriction that we impose on φ (·) is that φ (h) ≤ γh. If one chooses a convex functional
form for φ (·), it can capture the capacity constraints on hospitals.

12. We abstract from investment which, given the short period of time under consideration, seems reasonable.

13. The functional form in (2) is the same utility form used by Becker, Philipson, and Soares (2005), Hall and Jones
(2007), Ales, Hosseini, and Jones (2014), and Eslami and Karimi (2019) where, intuitively, b captures the “value of
being alive,” in terms of the utility of consumption per unit time. From a technical standpoint, when η is in [1,∞),
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Finally, we assume the economy starts in period t = 0 with a given total and initially infected
populations, N0 and I0, respectively. We assume that a vaccine is developed in period T > 0,
when all the infected (and hospitalized) population receive it and the disease is eradicated.

It is worth noting that we can modify this last assumption to capture Alvarez, Argente, and Lippi
(2021)’s framework where the cure arrives randomly according to a Poisson process, making the
planning problem in the next section stationary and significantly reducing its computational in-
tensity. However, we believe the current setting captures the policymakers’ perception of what
course the pandemic would take at its onset more accurately, making it a more appropriate frame-
work for the ex ante analysis of policy, even if, ex post, the COVID-19 pandemic followed a more
complicated course.

3.1 Policy and the Information Structure

Our goal is to study the problem of an egalitarian planner in this setting who cannot directly
observe the actual number of infected (and susceptible) in t = 0 and any subsequent period, but
only the number of hospitalized at the beginning of each period. The two policy instruments at
the planner’s disposal are mitigation and testing.14,15

In our environment, mitigation refers broadly to all non-pharmaceutical interventions that can
directly affect the effective reproduction ratio, by reducing the average number of (transmitting)
contacts between individuals. We consolidate all such policies in a variable m. In particular, in
each period t, the planner can directly control the infection rate by choosing any mt in [0, 1]. One
can interpret mt = 1 as no intervention, whereas mt = 0 indicates the most restrictive lockdown
of the economy.

Non-pharmaceutical restrictions—such as social distancing, capacity restrictions or lockdown
of various sectors—also reduce the productivity in the economy. This is captured by a non-

b > 0 makes sure that the utility of living remains above the utility upon death—for a minimal (sustenance) level of
consumption.

14. In what follows, we implicitly assume that the planner can also freely redistribute resources in the economy.
This assumption is in contrast to that in, e.g., Glover et al. (2020). For a strictly concave utility function of the form in
(2), this implies that the planner equalizes consumption across all living individuals. We will take this trivial result
into consideration when writing the planner’s objective function.

15. In a robustness exercise, we test the results of our baseline model in section 4.3 when the planner assigns
considerable and negative weight to hospitalization. This assumption amplifies the overreaction, when uncertainty
is moderate. However, our results regarding under-reaction when uncertainty is high reverses: Now, the planner
overreacts even further at the start of the pandemic, instead of waiting for more information.
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decreasing function Ω : mt 7→ Ω (mt) of the form Ω : [0, 1] → [0, 1], specifying the fraction
of economic activity that is allowed under mt.16

Testing in our framework, on the other hand, refers to the integration of all the tools that a
policymaker can employ to gain a better insight into the underlying states of the economy. To
formalize such function in a stylized way, we assume that, in each period t, and in addition to the
hospitalized population Ht, the planner receives an additional signal of the form

Kt = λIt + υt (κt) , (3)

where λ is the fraction of testing among the infected and κt denotes the choice of testing policy in
t, taking values in [0, 1]. In (3), υt (κt) (read upsilon) is a white noise of the form υt ∼ N (0, ζ (κt)),
where ζ (·) is assumed to be a strictly decreasing, strictly convex function, with the property that
ζ (κ) ↗ ∞, when κ ↘ 0, and ζ (κ) ↘ 0, as κ ↗ 1. In this sense, κt = 1 can be construed as
testing all the population who are alive for the virus, while κt = 0 means no testing at all—under
which, Kt loses all its information content. We will refer to Kt as the positivity rate in t.

The literature on the economics of pandemics has largely focused on testing as an instrument to
identify the asymptomatic cases in the population. When coupled with effective quarantining,
this is an important channel through which this policy can reduce the effective infection rate. We
model this direct effect of testing via a strictly decreasing function Γ : [0, 1] → [0, 1], with the
property that Γ (0) = 1. For any κ, Γ (κ) characterizes the effect of testing on the infection rate.17

Finally, testing is assumed to be costly. In particular, administering κN tests entails a cost of
Λ (κN) in terms of real output. Function Λ (·) is assumed to be strictly increasing and convex,
with the property that Λ (0) = 0.

The timing of the planning problem, given these two instruments, is as follows: At the beginning
of period t, the planner receives the news about the realized hospitalization Ht. Next, she decides
about the testing policy, κt. Given this policy, positivity rate Kt is realized. Finally, she makes a
mitigation decision, mt, based on which production and consumption take place. At the end of
the period, φ (Ht) of the hospitalized population succumb to the disease.18

16. A general functional form for the openness enables us to capture the assumption in Alvarez, Argente, and Lippi
(2021) where the planner cannot close the economy below some critical level. In our quantitative exercise, however,
we restrict our attention to the case where Ω (m) = m.

17. While stylized, this approach captures the direct effect of testing on the infection rate without introducing an
additional state. See Berger et al. (2022) for a model with asymptomatic infection as a state.

18. An alternative timing is for the planner to decide about mt and κt, simultaneously. We briefly discuss the
planning problem and the quantitative solution corresponding to this alternative timing in appendix E.
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Given mt and κt, the laws of motions of the aggregate states in the economy are as follows:

Ht = θIt + εt, (4)

It+1 = [1 +mt · Γ (κt) · β − γ] It, (5)

Kt = λIt + υt (κt) , (6)

Nt+1 = Nt − φ (Ht) . (7)

In addition, given the policy in period t, total population alive, Nt, and total hospitalized popula-
tion, Ht = ht, the aggregate output in the economy is given by

Yt = Ω(mt) · w · (Nt − ht)− Λ (κt ·Nt) . (8)

In our model, the disease propagates according to (a slight variation of) a SIS model, rather than
standard SIR models used by most economists. As you will see in the next section, such an
approximation is crucial in keeping our framework analytically and numerically tractable. In
appendix D, we demonstrate that, under our parameters estimates, our “linearization” remains
an accurate one around the SIR model in the first three months of the COVID-19 pandemic, even
in the absence of mitigation. Given that our quantitative results focus on the initial months of
the pandemic, we believe that our approximation remains reasonably accurate in addressing the
questions that are of interest to this study.

At the end of this section, we must acknowledge that our implicit assumption that the planner
knows the characteristics of the disease with complete certainty, while being uncertain about the
underlying states, is a rather strong one. The most obvious reason for such an assumption was
to keep the complexity of the model at bay. This is a point, however, that we get back to at the
end of section 5, and partially address in appendix F.

3.2 The Planner’s Problem

Given the information structure, a planner’s problem for the economy of section 3 involves solv-
ing filtering problems within an otherwise standard dynamic program, in which the planner has
to extract information from two separate signals that she receives in each period. In addition,
both of these signals are endogenous to the planner’s actions.19

19. Note that both mitigation and testing policies directly affect the evolution of unknowns in the economy, which,
in turn, determine mean signal values. In addition, testing directly determines the noise in the positivity rate.
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The timing of the problem, as specified in section 3.1, entails two important implications that
greatly simplify the planning problem: First, it allows us to break the planning problem within a
period into two “stage” problems—a first stage and an interim stage problem. Secondly, when it
comes to the extraction of signals, even though signals are endogenous to the planner’s actions,
the timing allows us to separate the filtering from optimization problem, in each stage.

This “separation principle” allows us to, first, solve the filtering problems to characterize the
evolution of planner’s beliefs conditioned on the choice of policy and signals’ realizations. After-
wards, these beliefs and their laws of motion can be incorporated—as a state and its corresponding
control system—into a standard dynamic program for each stage.

Filtering and the Evolution of Beliefs

Our goal is to construct a mean square estimate of some measurable function for each instant
t on the basis of a partially observed process. Here, the function under consideration is the
planner’s value (or continuation value) function, and the partially observed process consists of an
underlying process governing the number of infected—the unobserved component—and a signal
process—the observed part—both of which are controlled. The optimal filter is characterized by
an important result in filtering literature, sometimes referred to as the representation theorem.

In discrete time, however, finding the optimal filter boils down to the repeated joint applications
of the the Bayes rule and laws of motion of states to characterize the evolution of planner’s beliefs
about the underlying states of the economy—that is the “density” of state variables.

To see how this works, first note that each period t in our economy can be divided into three
stages according to the timing within a period: (i) the very beginning of a period, before the
hospitalized population is realized (which we denote by superscript beg); (ii) after the realization
of hospitalization, before a testing decision is made (denoted by hos); and (iii) after the positivity
rate is realized, before a mitigation decision is made (denoted by int).

As elaborated in appendix B, the choice of stages in which we keep track of the planner’s beliefs
have a critical bearing on the number of states in our problem formulation. Therefore, for the
sake of minimizing the set of state variables in the planning problem, we focus on the planner’s
beliefs in stages (i) and (iii) in each period—right before the realization of Ht and right after the
positivity’s realization, respectively—and their evolution. If we let Qs

t (i) := Pr (It ∈ i | I s
t )

be the probability of the infected population being in the set i in stage s, conditional on all the
information available, we can denote the beliefs in (i) and (iii) by Q

beg
t (·) and Qint

t (·) in period
t. We will use Qhos

t (·) to denote the beliefs in stage (ii)—after the realization of hospitalization,
before testing decision is made—when needed.
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As Kushner and Dupuis (2014) note, this choice of states enables us to break the updating equation
into two steps: In the first step, “we update the effects of dynamics,” and then we “incorporate the
observation” of the signal. The importance of the choice of a linear law of motion for the infected
in (5) and linear signal equations of the forms (4) and (6) becomes clear now: If the planner’s
priors are Gaussian her posteriors will be Gaussian as well, making the evolution of planner’s
beliefs tractable.

To see how this works, let Qbeg
t ∼ N

(
µ

beg
t , σ

beg
t

)
. Then,

Pr (Ht | It = i) ∼ N (θi, ν) . (9)

As a result, conditioned on observing Ht = h in t,

Qhos
t ∼ N



θh

(
σ

beg
t

)2

+ µ
beg
t ν2

θ2
(
σ

beg
t

)2

+ ν2

,
νσ

beg
t√

θ2
(
σ

beg
t

)2

+ ν2


 =: N

(
µhos
t , σhos

t

)
.20 (10)

Similarly, under the assumption that Pr (Kt | It = i, κt = κ) ∼ N (λi, ζ (κ)), and given Qhos
t ∼

N
(
µhos
t , σhos

t

)
, conditioned on the realization Kt = k,

Qint
t ∼ N


λk

(
σhos
t

)2
+ µhos

t ζ (κ)2

λ2
(
σhos
t

)2
+ ζ (κ)2

,
ζ (κ)σhos

t√
λ2

(
σhos
t

)2
+ ζ (κ)2


 =: N

(
µint
t , σint

t

)
. (11)

Finally, given the law of motion of infected, the choices of policy, κt = κ and mt = m, and
Qint

t ∼ N (µint
t , σint

t ), we have

Q
beg
t+1 ∼ N

(
[1 +m · Γ (κ) · β − γ]µint

t , [1 +m · Γ (κ) · β − γ]σint
t

)
= N

(
µ

beg
t+1, σ

beg
t+1

)
. (12)

Intuitively, the updating equations in (10) and (11) characterize the optimal filter by specifying
the “optimal weight” the planner must assign to her priors and to the signal. This is most clearly
observed if we write µhos

t and µint
t as

µhos
t =

θh
(
σ

beg
t

)2

/ν2 + µ
beg
t

θ2
(
σ

beg
t

)2

/ν2 + 1
and µint

t =
λk

(
σhos
t

)2
/ζ (κ)2 + µhos

t

λ2
(
σhos
t

)2
/ζ (κ)2 + 1

.

20. This is derived by substituting (9) into the updating equation—equation (26) in appendix B.
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These equations show that, the lower the variance of the noise, the more emphasis the planner
has to put on her new observations, and less on her past priors.

A Two-Stage Planning Problem

We can now write the planner’s problems in the first and interim stages, replacing the filtering
problem by the updating equations, equations (10), (11) and (12).

To this end, let us first combine (10) and (11) to write planner’s posteriors in some period t, after
Kt = k and Ht = h are realized—i.e. Qint

t (·)—as a function of her priors at the very beginning of
the period—that is Qbeg

t (·)—given the choice of testing κ:

µint
t (Kt = k) =

[
λks21 + s2ζ (κ)

2

λ2s21 + ζ (κ)2

]
and σint

t =


 ζ (κ) s1√

λ2s21 + ζ (κ)2


 . (13)

where s1 := νσ
beg
t /

√
θ2

(
σ

beg
t

)2

+ ν2 and s2 :=

[
θh

(
σ

beg
t

)2

+ µ
beg
t ν2

]
/

[
θ2

(
σ

beg
t

)2

+ ν2

]
. In

equation (13), µint is written as a function of K to emphasize the fact that, ex ante, it is a random
variable whose realization depends on the realization of the positivity rate. From the perspective
of the planner’s beliefs, the distribution of this random variable is as follows:

µint
t ∼ N


µhos

t ,
λ
(
σhos
t

)2
√
λ2

(
σhos
t

)2
+ ζ (κ)2


 , (14)

where µhos
t and σhos

t are given in (10).

Then, suppressing time-subscripts when possible for the sake of notational brevity, the planner’s
first-stage problem in period 0 ≤ t < T , given the population alive (N ), priors before updating
based on the hospitalized realization (Qbeg) and the realization of hospitalization (H = h), can be
written recursively as

Vt

(
N,H = h,Qbeg ∼ N

(
µbeg, σbeg))

= max
κ∈[0,1]

E
[
V int
t

(
N,H = h,Qint ∼ N

(
µint (K) , σint) , κ

)]
, (15)

subject to laws of motion of beliefs in (13). In this problem, V int
t (·, ·, ·, ·) is the planner’s interim

value in period t. The expectation in problem (15) is evaluated with respect to µint, given its
distribution in (14).
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The planner’s recursive interim-stage problem, for any 0 ≤ t < T , is:

V int
t

(
N,H = h,Qint ∼

(
µint, σint) , κ

)
= (16)

max
m∈[0,1]

{
N · u (Y/N) + ρE

[
Vt+1

(
N − φ (h) , H ′,

(
Qbeg)′)]

}

s.t. Y = Ω(m) · w · (N − h)− Λ (κ ·N) , 21

where
(
Qbeg

)′ is specified by (12).

The expectation in (16) is an iterative expectation operator, first with respect to the conditional
distribution of H ′, given I ′ (as in (9)), and then with respect to the distribution of I ′, as perceived
by the planner. However, we can use the law of iterated expectations to write this as the expecta-
tion with respect to the unconditional distribution of H ′. Given planner’s priors at the beginning
of period t+ 1 about the distribution of infected,

(
Qbeg

)′, this unconditional distribution is

H ′ ∼ N
(
θ
(
µbeg)′ ,

√
θ2

[
(σ̃beg)′

]2
+ ν2

)
. (17)

In the terminal date (t = T ) and after the introduction of the vaccine, planner’s value becomes

VT

(
N,H = h,Qbeg ∼ N

(
µbeg, σbeg)) = N

[
u

((
N − h

N

)
w

)
+ ρ

u (w)

(1− ρ)

]
. (18)

The Unravelling of Uncertainty

Before discussing our solution method and demonstrating our quantitative results, it is worth-
while to examine the implications of the updating equations for the optimal policy. A critical
observation with regard to mitigation in our economy is its impact on uncertainty. As equa-
tion (12) shows, the variance of posteriors decreases as the planner imposes more restrictions
on the economy. This observation suggests that, other than restricting the spread of the disease,
mitigation also serves as an important information acquisition device.

Next, note that, as κ → 0 in (11), Qint
t converges to Qhos

t (in a strong sense). Intuitively, this
means the positivity rate loses its information content as fewer people are tested in a period. It
is informative to compare the case of κ = 0 with one where κ → 1. In this latter scenario, the
variance of µint in (14) tends to σhos. It is important to remember that this is different from the
planner’s posterior after observing K . When κ = 1, the planner will have full information about
the state of the economy after observing K . (This is clear from equation (11), with σint → 0 as
κ → 1.) However, her prior about “which” value of K will be realized at the time of choosing

15



κ = 1 is by no means certain. This prior is determined by her beliefs about the distribution of
infected in the current period—i.e. by N

(
µhos, σhos

)
.

The above argument underlines two tensions in the planning problem when choosing the testing
policy: If, we assume Γ (κ) = 1 for the sake of argument, an increase in κ, on the one hand, leads
to a decline in the next period’s variance of beliefs, and, on the other hand, makes the information
content ofK more valuable. This means that the planner’s uncertainty increases in the immediate
future. In other words, an increase in κ “brings uncertainty from the future to the present.” As we
will discuss in section 4, a planner’s willingness to do this is driven by two forces: An inclination
for ignorance, and an aversion to making policy mistakes. We will return to this point later on.

4 Quantitative Results

The functional equations in (15) and (16) characterize a non-stationary dynamic program which is
analytically intractable. However, one can use a standard iterative method to solve this program
numerically, to examine the properties of its solution and the policy functions associated with it.
This is done by starting from the terminal condition (18), and solving for Vt (·, ·, ·) and V int

t (·, ·, ·, ·)
as functions of V int

t (·, ·, ·, ·) and Vt+1 (·, ·, ·), respectively, for a given choice of functional forms
and parameter values.22

To this end, we choose one day as the length of one period in our model, and we assume that the
vaccine is developed after 540 periods (18 months). As mentioned at the beginning of section 3,
though far from a consensus, this was the most widely-held belief among the public about the
course of the pandemic at its onset. As such, we find it a reasonable benchmark to capture the
planner’s beliefs at the start of the pandemic.

We normalize N0 to 100, and set η = 2 in (2) as is customary in the macroeconomic literature.
The annual discount rate is set to 0.95 (to incorporate the natural mortality rate). Value of being
alive, b in (2), is chosen such that the value of statistical life is equal to $10m.23

The functional form of ζ (κ), the standard deviation of testing, is set so that it is strictly decreasing
and convex with the testing policy κ. The standard deviation parameter νκ is normalized with

22. Even from a numerical standpoint, the problems in (15) and (16) are extremely resource-intensive and time
consuming: These are non-stationary problems in a minimum of five state variables. In addition, there is no guar-
antee that they are concave programs. We discuss the novel solution method used for the simulations in the online
appendix.

23. This is the midpoint of statistical value of life estimates in the literature, and at the upper bound of the value
suggested by Hall and Jones (2007).
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the initial testing rate κinit = 4.08 · 10−4.

ζ (κ) = κinit · νκ ·
(
1

κ
− 1

)
. (19)

The fatality function is
φ (H) = min

{
φ1H + φ2H

2, H
}
, (20)

where φ1 and φ2 are calibrated using Government of Canada’s cumulative hospitalization and
fatality reports by July 9, 2021.24

We assume an average Canadian earns $125 a day, and choose the following functional form for
the cost of testing:

Λ (κ ·N) = a1 · κ ·N + a2 · (κ ·N)2 . (21)

In section 4.3, a1 and a2 are chosen prohibitively large, to capture the more relevant scenario
in which testing capacities are fully developed only later in the pandemic. In sections 4.2 and
4.4, under the counterfactual that testing is available from the beginning of the pandemic, a1 is
chosen such that a single test entails a flat cost of $50, and a2 such that testing 10% of population
in a single day calls for 10% of the daily output.

Finally, we let Ω (m) = m and

Γ (κ) =
1

(1 + e · κ) . (22)

We choose e such that, at its full capacity (κ = 1), testing can reduce the infection rate by 50%.

4.1 Estimation and Data

We use two main datasets to estimate the epidemiological parameters of the model—i.e. β, γ,
θ, λ, ν, νκ and I0: COVID-19 epidemiological data including hospitalization, deaths, confirmed
positives, and number of tests administered, and mobility data in Ontario, Canada, from April 2,
2020, to May 28, 2021.25 Our epidemiological data includes the number of patients hospitalized
and deceased with COVID-19, number of confirmed positive tests, and the total number of tests
sourced from the Government of Ontario. Mobility data comes from Google COVID-19 Commu-

24. This is similar to the fatality function used by Alvarez, Argente, and Lippi (2021).

25. April 2, 2020 is the earliest date on which the hospitalization data is available for the province of Ontario.
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Figure 2. Hospitalization and Mobility in Ontario

Source: Google COVID-19 Community Mobility Reports and Government of Ontario.

nity Mobility Reports, for the province of Ontario, Canada.26

Figure 2 illustrates the hospitalization rate (solid blue line) and confirmed positives (solid black
line) as a fraction of the population 30 years old and over on the right panel, and the mobility
index on the left panel, where the average mobility in February, 2020, is normalized to 1. More
details of the data construction and sources can be found in appendix A. Model counterparts for
the hospitalization, confirmed positives, and mobility are H , K , and m, respectively, as given
by equations (4)–(6). Using the changes in mobility index compared to the pre-pandemic period
as a proxy for the degree of mitigation m, which is the control variable in the interim planning
problem in (16), is a widely used exercise in the literature (e.g., see Bargain and Aminjonov 2020;
Barrios et al. 2021). Finally, the number of deaths due to COVID-19 accounts for the changes in
the total population (N ) in the model.

In using the data for calibration, we assume that the hospitalization and confirmed positive data
series are lagged signals of the true number of infected I . More specifically, we assume that
hospitalization and confirmed positive data is a signal for the true number of infected 35 days
prior to the observation. This is motivated by a seemingly negative correlation between the mo-
bility rate and hospitalization and confirmed positive rate, as can be observed in figure 2. For
example, by the end of December, 2020, the mobility index dropped sharply as the “strict” miti-

26. As Brodeur et al. (2021) argue, there are many advantages but also shortcomings in using the mobility data. One
important note is that mobility data combines all the mitigation policies in effect, from social distancing to lockdown
and self-isolation. The potential downside is that it also involves behavioural factors. In the context of our model, our
assumption is that a planner is already internalizing these behavioral factors and suggesting a decentralized policy
that brings about the unconstrained optimum. However, we acknowledge that the mobility data does not provide
situation context for the data reported.
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Parameter Value Description Source

γ 1/18 Recovery rate Alvarez, Argente, and Lippi (2021)
θ 0.025 Hospitalization rate CDC
λ 0.302 Fraction of testing θ/ frac.hospitalized*
ν 0.036 Signal noise std, hospitalization





Joint estimation
νκ 0.814 Signal noise std, testing
β 0.091 Infection rate
δ 0.176 Variant infection factor
I0 0.071 Initial infected, percentage

Table 1. Calibration of Epidemiological Parameters

gation measures were implemented in the province. However, the hospitalization and positivity
rate increase sharply after the provincial shutdown has begun. Under our benchmark structure,
where the strict mitigation measures (low m) suppresses the number of infected (I) immediately
without delay and both hospitalization (H) and confirmed positive (K) are meaningful signals
for the infected, such observation of strict mitigation measures and simultaneous spike in hos-
pitalization and confirmed positive is extremely unlikely through the lens of the model. In order
to reconcile these seemingly counterintuitive observations and maintain the tractability of the
model, we assume that hospitalization and confirmed positive data at time t are signals for the
number of infected in (t− 35), where one period corresponds to one day.27

We use these two data series of hospitalization/confirmed positivity rate and mobility index to
estimate the standard deviation of hospitalization signal noise (ν), testing signal noise (νκ), the
infection rate (β), and the initial percentage of infected (I0), using particle filters.28 In order to
account for the Alpha variant, which was first detected in Ontario in January, 2021, and is known
to be more contagious than the previous strains (Jüni et al. 2021), we estimate a “variant infection
factor” parameter, δ, which augments the infection rate from January 1, 2021, to the end of the
sample period.29 Our estimation method involves maximizing the likelihood of our infection
control system, using a sequential Monte Carlo (particle filter) algorithm designed for non-linear
partially-observed Markov processes (POMP) (King, Nguyen, and Ionides 2016). The details of

27. Admittedly, the exact number of days in delay (35 in this case) is difficult to measure. We have matched the
peak of the second wave hospitalization date and the sharp drop in mobility in this calibration. This is designed to
give a conservative measure of the key parameters ν and νκ, the standard deviations of hospitalization and confirmed
positive signal noise, respectively.

28. Since the N0 is normalized to 100, I0 is the percentage of population 30 and over that are infected at time t = 0.

29. In other words, β in equation (4) has now an additional coefficient: β(1 + δ1{year=2021}).
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Figure 3. Hospitalization Data vs Model Simulation Results

Source: Government of Ontario and authors’ calculations.

particle filtering algorithms, including the settings for the method of iterated filtering and pomp
R-package used in the calculation, are discussed in appendix C.

Two of the three remaining epidemiological parameters, namely the recovery rate (γ) and hos-
pitalization rate (θ), are borrowed from the literature and the estimations of CDC, respectively.
Finally, the fraction of testing among the infected (λ) is calculated as the ratio of hospitaliza-
tion (θ) over the fraction of hospitalized among the confirmed positives in the data, which is on
average equal to 0.083 over the sample period.30 Table 1 summarizes the estimation results.

Using the estimated parameters, we can compare the hospitalization and confirmed positives
data and the model predictions in order to evaluate the fitting of our epidemiological model to
the data. Figure 3 depicts the data hospitalization rate (solid black line in the left panel) overlaid
with the simulated mean hospitalization rate (solid orange line in the left panel). Analogously,
the positivity rate (solid black line in the right panel) and its simulated mean model counterpart
(solid orange line in the right panel) are compared. The model performs particularly well in
predicting the second wave (with its peak hospitalization rate around mid-January, 2021), while
the first wave peak hospitalization rate in the model is earlier than that of the data. The predicted
hospitalization peak during the third wave lags that in the data. Overall, given the restrictions
of the model parameters—for example, a fixed recovery rate (γ), which, in reality might have
changed over the course of pandemic depending on variants or hospital capacities—our simplified
framework can fit into the recurring waves of COVID-19 outbreaks in Ontario rather well.

In the remainder of this section, we use our results in table 1 to solve and compare the planning

30. This follows from the fact that the average number of hospitalized we observe in the data is also a fraction of
confirmed positive cases.
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problem, numerically, under different scenarios.

4.2 Case of Full Information

Following the standard practice in the information economics literature, we begin our analysis by
examining the case of full information—that is, when the planner knows the underlying state of
the economy with certainty. This also allows us to test our “overreaction” hypothesis later on, by
comparing the optimal policy with and without uncertainty—i.e., constrained vs unconstrained
optima.

The assumption of full information corresponds to a case where σbeg = 0 in (15) and (16). When
that is the case, K loses its information value, and we can combine these two problems as

Vt (N,H = h, I) = max
m,κ∈[0,1]

{
N · u (Ω (m)w (N − h) /N)

+ ρE
[
Vt+1 (N − φ (h) , H ′, [1 +m · Γ (κ) · β − γ] I)

]}
, (23)

subject to the same terminal condition as before. In equation (23), we have replaced Qbeg by I ,
as the planner’s belief about the average number of infected people coincides with the actual
infected population. The expectation in (23) is with respect to the (conditional) distribution of H ′

in (9).

Figure 4 depicts the solution to the Bellman functional equation in (23) for t = 0 and two different
values of H0, as a function of I0, when testing is available from the onset at the cost given in (21).
While far from reality, this counterfactual helps highlight the mitigation role of testing in our
setting when information is not a concern.

As one can expect, the average lifetime expected utility is decreasing in the initially infected pop-
ulation.31 An uncommon feature of this value function, however, is its convexity in the number
of infected. This implies, if everything else could be kept unchanged, a mean preserving spread
of the beliefs around some value of I0 would in fact increase the planner’s expected payoff—that
is the planner would prefer uncertainty over the average number of infected.

Figure 5 shows the sample path of optimal mitigation policy in the first 310 periods, and the re-

31. While the numerical value of the function is not relevant, it is worth mentioning that the value function itself
remains positive for all values of I0 of interest—that is above the value upon death. If this were not the case, the
disease would create a possibility for the planner to kill as many people as possible!
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Figure 4. Initial Value as Function of Infected Population
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sulting paths of infected, (accumulated) deceased, and hospitalized population under the optimal
policy. Each sample path in each panel corresponds to one level of initial infection.

In all cases, optimal policy involves no testing in the first 310 periods (κt = 0). Therefore, ac-
cording to our model, controlling the spread of the disease must be entirely delegated to non-
pharmaceutical mitigation, when information is not a concern.32

As panel (d) of figure 5 shows, the optimal initial reaction to the pandemic becomes more strict
as the number of initial cases increases, as expected. However, these initial differences in optimal
mitigation are neither significant nor prolonged. What stands out is the time it takes for the
restrictions to be lifted as the number of initial cases increases, ranging from 50 days to about
200 in figure 5. In other words, optimal mitigation under full information mostly involves an
adjustment of the mitigation duration, rather than its magnitude, in response to a change in

32. As a result of this, figure 5 remains virtually unchanged if we assume testing is prohibitively costly in t = 0.
We emphasize that this result must not be viewed as contradicting an expansive literature that underlines testing as
a targeted mitigation policy to isolate only hazardous contacts. That is because testing in our model does not differ
from other non-pharmaceutical interventions. This is different from saying that testing is an ineffective instrument
when, e.g., the disease has an asymptomatic phase, à la Berger et al. (2022).
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initial infection.33

It is worth emphasizing that, when the initial infected population is equal to our estimation for
Ontario in the early days of the pandemic in section 4.1, we find similar results to those in Glover
et al. (2020): Calibrating a standard macroeconomic model within an epidemiological framework
to the U.S. data, Glover et al. argue that

a comparison of the utilitarian optimal policy to the actual policy in place as of Easter
2020 indicates that the shutdown in place was around twice as extensive as it should
be. However, the optimal policy calls for leaving a partial shutdown in place well into
the fall.

When we compare the optimal mitigation policy in figure 5 with the actual policy pursued in
Ontario in the early days of the pandemic in figure 2, it appears that Ontario, too, reacted exces-
sively to the pandemic’s arrival. In addition, as in Glover et al., this initial reaction was followed
by a premature reopening of the economy. These results change dramatically in the next section,
under partial information.

4.3 Mitigation under Uncertainty

As the first step in our investigation of optimal policy under partial information, we consider a
case where testing is prohibitively costly. This scenario is a reasonable description of the problem
policymakers were facing in the starting months of COVID-19 pandemic, when COVID-19 testing
kits were scarce, expensive and inaccurate, and health care systems had not yet developed a
capacity to test people on a large scale.

Under the assumption of no testing (κ = 0), the positivity rate loses all its information content
(since ζ (κ) → ∞ as κ → 0). As a result, one can combine problems (15) with (16) as

Vt

(
N,H = h,Qbeg ∼

(
µbeg, σbeg)) = (24)

max
m∈[0,1]

{
N · u (Y/N) + ρE

[
Vt+1

(
N − φ (h) , H ′,

(
Qbeg)′)]

}

s.t. Y = Ω(m) · w · (N − h)− Λ (κ ·N) .

33. Optimal policy converges in all cases after period 300, and demonstrate “waves” before the complete reopening
of economy one month before the arrival of vaccine. This is because, as we get closer to the development of a cure, the
“future costs” of the spread of the virus dissipate rapidly. This is consistent with Giannitsarou, Kissler, and Toxvaerd
(2021)’s claim that optimal mitigation depicts oscillations before final reopening.

23



Figure 5. Time-Path of Policy, and Infected, Hospitalized, and
Deceased Population under Optimal Policy
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Note: Only the first 310 days are drawn. We assume planner has full information and that
realized signal noise is zero in all periods. Low, medium and high I0 correspond to 0.07, 0.5 and
1 percent of N0, respectively. Discontinuities in optimal paths are, partly, artifacts of relatively
coarse discrete grids and interpolation in the numerical exercise, and, partly, the result of the
oscillatory nature of optimal mitigation. See the online appendix for an explanation.
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In this problem, µbeg serves as an indicator of the planner’s beliefs about the infected. On the
other hand, σbeg captures the level of uncertainty in her beliefs. The evolution of µbeg and σbeg are
specified by (10), (11) and (12) when κ = 0. In what follows, we show how different scenarios for
these initial beliefs entail significantly different implications for the optimal mitigation policy.

Figure 6 illustrates a simulation exercise derived from solving problem (24), when the actual
number of initially infected, I0, is set equal to our estimate in section 4.1 for Ontario in the early
weeks of the pandemic. While planner’s beliefs coincide on average with I0 (µbeg

0 = I0), there is
moderate uncertainty about this number (σbeg = 0.1 before observing H0).

The left hand side axis in panel (a) in figure 6 depicts a sample path of actual infected popula-
tion, together with the planner’s mean beliefs about this variable. The right hand axis shows the
number of hospitalized as time passes. As a result of the assumption that the realized noise in the
signal is zero in all periods (εt = 0 for all 0 ≤ t ≤ T ), all the lines coincide in this graph, indicating
that the planner is systematically making correct inferences about the underlying state.

As argued in section 3.2, the planner’s choice of mitigation in panel (c), not only affects sample
paths of It, µbeg

t and Ht, but also the standard deviation of beliefs, as depicted in panel (b). In
particular, when a strict lockdown is in place at the beginning, the level of uncertainty decreases
dramatically. This is a direct result of the mitigation’s role as an information acquisition device.34

A comparison of the optimal mitigation under partial information in figure 6 with that under full
information (figure 5) highlights the potential role of uncertainty in the initial excessive reaction
to the COVID-19 pandemic. The first two curves in figure 7 reproduce the optimal policy paths
under these two scenarios. As the graph illustrates, uncertainty causes the planner to follow a
significantly more strict mitigation policy—namely, an optimal overreaction, of up to 20% in the
initial months.

This optimal overreaction, as one might expect, is a result of the role of mitigation in resolving
uncertainty—as an information acquisition device. However, the planner’s yearning for more
information has a more subtle cause than an aversion to risk. To further elaborate this point,
figure 8 compares the initial value functions for different levels of uncertainty, and for different
realizations of H0, as functions of average beliefs.

As figure 8 suggests, the planner’s value function is convex in her priors about the average in-

34. A similar simulation in which hospitalization signals contradict planner’s mean beliefs for two weeks shows
that only a few periods of bad news is enough to permanently scar the planner’s beliefs about the actual underlying
state. This “scarring effect” decelerates the partial reopening after the initial 50 periods, when compared to the case
without unfavourable signal noise.

25



Figure 6. Time-Path of Policy, and Actual Infected Population and
State Variables under Optimal Policy
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Figure 7. Time-Path of Optimal Policy under Different
Scenarios
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Figure 8. Value Functions under Different Levels of Uncertainty and
Different Signals
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fected population, for a given realization of hospitalization.35 As a result, the ex ante value is
non-monotone in the variance of priors, for a given value of µbeg. In addition, the shape of this
dependence appears to change significantly once H0 is realized. Theoretically, this is because
of the fact that the posterior beliefs are a function of the prior’s variance, and the shape of this
function is highly dependent on the current realization of H0.

To further expand on the intuition behind this observation, consider two planners: A planner
who is certain that the underlying infected population is quite large, versus a planner who is
rather uncertain about the underlying state. In case both of these planners observe a low level
of hospitalization, the former attributes it to pure chance, while the latter uses it to infer that the
underlying state is not as dire as once imagined. The second planner, consequently, has a higher
expected utility than the former, be it due to her naivete.

The inverse of this argument also holds: For an uncertain planner who initially holds low beliefs
about the underlying number of infected, the realization of a large number of people in the hos-
pitals can be quite devastating. This is most clearly seen by comparing the value functions for a
high value of σbeg, in panels (a) and (b) of figure 8.

As figure 7 suggests, it appears that the sheer possibility of receiving an unfavourable hospitaliza-
tion realization in the future is the dominant force in determining the planner’s optimal course
of action. This is in line with the intuition provided by the learning literature for the value of
information in informing “at least as good decisions” as under uncertainty (Gollier 2001).

An experiment can highlight this force in the choice of policy further. The dashed-dotted orange
line in figure 7 depicts the path of optimal mitigation under the same scenario as that in figure 6,
but with considerable initial uncertainty (σbeg = 1.0, as opposed to σbeg = 0.1, in t = 0). As the
figure suggests, optimal policy in this case involves a significant “under-reaction” in the first week
or so. This initial lack of reaction, then, is compensated in the following weeks by subjecting the
economy to severe restrictions which are then extended far beyond the case with only moderate
uncertainty.

With significant initial uncertainty, mitigation loses its content as an information device, but still
can generate costly policy mistakes. Therefore, the best course of action is to postpone the initial
reaction by several periods until enough signals are received from the hospitals and the initial
uncertainty is partially resolved.

As a final exercise, we consider a case where the initial uncertainty is accompanied by a consid-

35. This is different from the standard result in the leaning literature, that the payoff is convex in posterior beliefs,
as shown by, e.g., Gollier (2001).
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erable underestimation of I0, before observing the first signal (µbeg
0 = 0.01 ≪ I = 0.07). Optimal

policy is shown by the dotted green curve in figure 7. Under this scenario, upon receiving the
first indications that contradict her beliefs, the planner implements a strict mitigation policy.
Compared to the case under full information, this policy exhibits a 35% overreaction.

Interestingly, as planner’s beliefs converge to the actual number of infected, the policy responds
by a premature reopening of the economy compared to the optimal policy under full information,
similar to what Glover et al. (2020) document on policy response in the U.S. This is because of
the rapid fall in the hospitalization signal as a result of the initial overreaction. This fall, coupled
with the fall in uncertainty itself, inhibits planner’s beliefs from further adjustments, leading to
the relaxation of the restrictions sooner than what optimal policy suggests under full information.

Even though the magnitude of our results change to some extent as we change the parameters
of the model—especially the value of being alive and the curvature of the utility function—the
direction of these results are relatively robust to such changes. Our robustness tests seem to
suggest that the rapid reopening of the economy, when µbeg severely underestimate I0, reverses
for high values of ν. The magnitude of overreaction is also, at least up to some point, most
sensitive to ν, even though the overreaction itself remains a robust feature of the constrained
policy. Our results do not change in response to a change in the arrival time of the vaccine, T .36

4.4 Testing as an Information Instrument

Our results in the previous section signify the value of information to a planner under uncer-
tainty, when policy mistakes can entail extreme costs. We showed that, when the only source of
information to the planner is an exogenous noisy signal, the planner uses mitigation policy as an
information acquisition device to avoid such policy mistakes.

These observations suggest that, had SARS-CoV-2 test kits been readily available at the start of
this pandemic, large-scale random testing could have replaced overreaction in mitigation. In this
section, we examine this hypothesis using our quantified model in a counterfactual scenario: We
assume that testing is available to the planner at the onset of the pandemic at a cost.

Panels (a) and (b) in figure 9 show optimal paths of mitigation and testing, as solutions to prob-
lems (16) and (15), respectively. The initially infected population, average and standard devi-

36. One exception in our robustness tests is the value of I0: Even though we estimate this value in our particle
filtering exercise, after experimenting with high values of I0, it appears that the overreaction disappears for levels
of µbeg

0 = I0 in the order of 2 to 5 percent of the initial population. These values, however, are clearly outside any
reasonable range.

30



ation of priors, and the realized noise in hospitalization signal are similar to those in figure 6
(µbeg

0 = I0 = 0.07, σbeg
0 = 0.1, and εt = 0 in all t ≥ 0). In addition, we assume that the realized

noise in the positivity rate is zero (υt = 0 in all t ≥ 0).

As one would expect, the convexity of the testing cost function limits the planner’s utilization
of this new instrument. Nevertheless, she still tests an astounding 14% of the entire population
in the first period alone. To put this into perspective, such large-scale testing eats up more than
17% of the economy’s output in a day, under the assumed cost function. This massive cost can be
viewed as the information premium that the planner is willing to pay to avoid policy mistakes.

This relatively comprehensive testing policy leads to a large decline in the variance of uncertainty.
Consequently, we would expect the mitigation policy not to exhibit much overreaction in this
counterfactual economy. This is indeed the case after period t = 0.

What is surprising in figure 9 is the “under-reaction” in mitigation in period t = 0. Three factors
contribute to this under-reaction: First, the comprehensive testing in t = 0 reduces the effective
infection rate by about 12%. However, this is still far from locking down 60% of the economy in
the case without uncertainty. Secondly, similar to the case with significant initial uncertainty,
when initial uncertainty is large relative to the signal noise, the planner is willing to postpone
mitigation to gain a more accurate insight into the underlying states. Finally, the cost that the
planner is paying for testing in t = 0 is so large that the planner can no longer afford a lockdown.
Nevertheless, information is so valuable to the planner that she is willing to pay such a large
premium, allowing a liberal spread of the disease in t = 0.

5 Concluding Remarks

Across developed countries, initial reaction to the first confirmed cases of SARS-CoV-2 infec-
tion was strict and swift enactment of mitigation measures—such as lockdown of parts of or
the entire economy. These initial policy responses were more excessive, in degree and range,
when compared to the later stages of the pandemic, considering the fact later variants and waves
demonstrated more concerning signs of a rapid and widespread propagation.

In this paper, we study the value of information during the pandemic in forming optimal mitiga-
tion and testing policies. We show that the above-mentioned excessive reaction can be justified
through the lens of partial information about the true number of infected.

To that end, we develop an epidemiological model where the true number of infected cannot be
directly observed, but inferred through two signals: hospitalization and positivity rate. An egali-
tarian planner can choose the mitigation measure and the scope of testing in order to control both
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Figure 9. Time-Path of Optimal Policy in Presence of Testing
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Note. Only the first 310 days are drawn. All black curves correspond to cases where testing
is available from onset. Panel (a) also depicts optimal mitigation with full information and
without testing for reference. All curves in panel (c) coincide. Realized noise in both signals
are set to zero for all t. Discontinuities in optimal paths are, partly, artifacts of relatively
coarse discrete grids and interpolation in the numerical exercise, and, partly, the result of
the oscillatory nature of optimal mitigation. See the online appendix for an explanation.
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the effective rate of infection and the quality of information regarding the number of infected.

Calibrated to the economy of Ontario, Canada, the model shows a similar degree of excessive
reaction in mitigation—as compared to a counterfactual scenario without any uncertainty—when
testing is prohibitively costly at the beginning of the pandemic and there is a reasonable degree of
uncertainty about the number of infected; what we refer to as optimal overreaction in mitigation.
We argue that this overreaction as the constrained optimum is the result of extreme costs of policy
mistakes when there is uncertainty about the true number of infected. As such, overreaction in
mitigation, serving as an information acquisition device in our environment, can prevent such
policy mistakes.

In a counterfactual scenario, when testing is available at some cost from the beginning, we show
that the planner is willing to allocate a significant portion of output for testing in order to elimi-
nate the uncertainty. This is the information premium that the planner is willing to pay to know
the true number of infected. Such premium replaces the information role of overreaction in our
counterfactual, highlighting an overlooked role of testing as an information instrument during a
pandemic.

Glover et al. (2020) argue that “one reason people disagree about the appropriate policy response
[to the pandemic] is that the benefits and costs of lockdowns are large and very unequally dis-
tributed. Thus different groups prefer very different policies.” By providing a general framework
for the study of optimal public health policy under partial information during a pandemic, we
provide an alternative justification for this: The optimal policy is extremely sensitive to our ini-
tial perceptions of the disease and to the costs our actions might entail for the society as a whole.
As these beliefs and costs change, they shift the severity—or even the direction—of the optimal
course of action.

At the end, we acknowledge that our model is still far from a realistic characterization of a pol-
icymaker’s information constraints at the beginning of COVID-19 pandemic. Most importantly,
our framework does not take into account that the planner might have been (and most probably
was) uncertain about the underlying dynamics of the disease—its reproduction ratio, its true fa-
tality rate, etc.37 If we had factored in these considerations in our model, our results might have
suggested a different initial response to the pandemic.

However, like most models of learning, even under simplifying assumptions, the resulting prob-

37. Let us not forget that even medical experts were not sure about the transmission mechanisms of SARS-CoV-2
one year into the pandemic. Had they advised on enacting mandatory face mask measures sooner, for instance, we
could have avoided a natural disaster of such scales.
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lem gets complicated quickly. This makes it quantitatively intractable to incorporate differing
dimensions of partial information into the model. As a result, we decided to separate potential
“structural uncertainties” from uncertainty about the state of the economy, and focus on the lat-
ter to underline the importance of testing to policymakers as an information device. Appendix F
presents a simple framework for the study of structural uncertainty, when the underlying state
is observed perfectly. The combined effect of these two dimensions of uncertainty and learning
is an area worth exploring.
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Appendices

A Data

The data used in section 4.1 to estimate the epidemiological model using particle filtering is as
follows:

1. COVID data

• Source: Government of Ontario

• Variables used in the paper
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Url: https://data.ontario.ca/dataset/f4f86e54-872d-43f8-8a86-3892fd3cb5e6/resource/ed270bb8-340b-41f9-a7c6-e8ef587e6d11/download/covidtesting.csv


– Number of patients hospitalized with COVID-19

– Deaths

– Confirmed Positive

– Total patients approved for testing as of Reporting Date

• We normalize the number of hospitalizations and deaths with the total population (14,734,014)
and fraction of population 30 and over (0.3562) sourced from Statistics Canada, 2020 Q3
population estimation.

2. Google mobility data

• Source: COVID-19 Community Mobility Reports

• Place id used in this paper: ChIJrxNRX7IFzkwRCR5iKVZC-HA

• Mobility index construction: A simple average of three categories

– Retail and recreation

– Workplace

• From the original mobility data, which is a percentage change compared to the baseline, we
transform the data so that 1 is the baseline. (x̃ = (x+100)/100 where x̃ is the transformed
data and x is the original data)

B Timing of Beliefs

As discussed in section 3.1, each period t in our economy can be divided into three stages ac-
cording to the timing within a period: (i) the very beginning of a period, before the hospitalized
population is realized; (ii) after the realization of hospitalization, before a testing decision is
made; and (iii) after the positivity rate is realized, before a mitigation decision is made.

To see how the choice of stages affects the representation equation and, in turn, the number of
states in our framework, let n identify the stage and period under consideration for the sake of
discussion. Then, I n is all the information available to the planner up to (and including) n (this
includes the history of signals’ realizations and policies), and In is the information that becomes
available to the planner between stage n and the previous one (such that I n = (I n−1,In)).

Let Qn (i) := Pr (In ∈ i | In) be the probability of the infected population being in the set i at
n, conditional on all the information available, capturing planner’s beliefs about the underlying
state of the economy.
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In here and all that follows, when we talk about the planner’s beliefs, we implicitly have a proba-
bility space in mind in which the sample space consists of the product of all possible sample paths
of the observed and unobserved components of the underlying processes, a sigma-algebra over
this set, and a probability measure over this space. The conditional probability measure, then, is
a probability kernel over an appropriately defined filtration over this probability space.

For a rigorous treatment of this problem, see Liptser and Shiryaev (2013). For our purposes, it
suffices to note that, under the assumptions of the model, and with a continuous initial belief,
Q (·) remains absolutely continuous with respect to the Lebesgue measure and, as a result, has
a Radon-Nikodym derivative—the so called probability density function of Q (·)—which we will
denote by small letter q, when of interest. The integrals with respect to the beliefs are understood
to be Lebesgue integrals.

Then,
Qn+1 (i) =

∫
Pr (In+1 ∈ i | In+1, In = in) ·Qn (din) . (25)

Using the Bayes theorem, this updating equation can be written as

Qn+1 (i) = A ·
∫

Pr (In+1 | In+1 ∈ i) · Pr (In+1 ∈ i | In = in) ·Qn (din) , (26)

for some constant of proportionality, A.38 In what follows, we will refer to Qn (·) and Qn+1 (·) as
the planner’s prior and posterior in n, respectively.

In general, the term Pr (In+1 ∈ i | In = in) in (26) is characterized by the Fokker-Planck equation.
However, in our settings and with a deterministic law of motion of the infected population, this
probability kernel boils down to a Dirac delta function for each value of in. It is clear that the point
mass of this function depends on n and the choice of policy between n and n+1. An implication
of this observation is that the choice of stages in which we keep track of the planner’s beliefs
have a critical bearing on the number of states in our problem formulation.

To economize on the set of states in our numerical analysis, thus, we pick stages (i) and (iii) to
track the planning problem and beliefs.

38. See Schervish (2012) for a measure-theoretic formulation of Bayes rule.
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C Particle Filtering

In section 4.1, we use a particle filtering method to estimate the following version of the epidemi-
ological model:

It = (1− γ)It−1 + β̃mt−1

(
St−1

Nt−1

)
It−1 (27)

St = St−1 + β̃mt−1

(
St−1

Nt−1

)
It−1 (28)

Ht = θIt + εt (29)

Kt = λIt + υt(κt) (30)

Nt = Nt−1 −Dt−1 (31)

β̃ = β(1 + δ1{year>2020}) (32)

εt ∼ N(0, ν) (33)

υt ∼ N (0, ζ (κt)) (34)

where Dt−1 is the number of deaths due to COVID-19 and δ is the “variant infection factor” as
explained in further detail in the Data and Calibration section (Section 4.1). Function ζ (κt) takes
the form ζ (κ) = κinit · νκ ·

(
1
κ
− 1

)
. where the standard deviation parameter νκ is normalized

with κinit = 0.0408/100, the (normalized) test rate on the initial data observation. All other
variables follow the benchmark model equations.

The estimation employs a method of iterated filtering using pomp R-package, as follows:

• Pseudo code for the local and global search in Maximum Likelihood Estimation

1. Set the initial guess Θ0 = {ν0, νκ0, β0, δ0, I0,0} and prior distribution for the parameter set
M(Θ).

2. Given Θi as the starting parameters, run the method of iterated filtering (mif2) Nl times
(local search).

3. For Nl sets of resulting parameters from step 2., evaluate likelihoods of the process (27)
using pfilter.

4. From the prior distribution M(Θ), randomly select Ng set of parameters.

5. Using the Ng set of parameters from step 4. as starting points, run mif2 Ng times (global
search).

6. For Ng sets of resulting parameters from step 5., evaluate likelihoods using pfilter.
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7. Find a new set of parametersΘi+1 with the maximum likelihood amongNl+Ng evaluations.

8. Stop if i+ 1 > Nmax. Otherwise go back to step 2.

• We use 3000 particles for each filtering and iterate the filtering process 300 times for each run of
method of iterated filtering (mif2)

• We use Nl = 20, Ng = 40, and Nmax = 60

• We use uniform distributions for all parameters as the prior.

ν ∼ U(0.0001, 1)
νκ ∼ U(0.0001, 1.5)
β ∼ U(0.01, 1)
δ ∼ U(0.001, 0.3)
I0 ∼ U(0.001, 30)

• Log likelihood of is evaluated using a sequential Monte Carlo algorithm (pfilter in pomp)

• For more details of the pomp, see King, Nguyen, and Ionides (2016).

D SIR vs SIS Models

Our choice of epidemiological model in section 3.1 is a slight variation of a SIS model, captured
by the following system of equations

I ′ = (1 + β − γ) I,

H = θI + ε,

N ′ = N − φ (H) ,

SIS Model

(35a)

(35b)

(35c)

absent any policy intervention. This is different from the standard compartmental model used by
most epidemiologists to model the dynamics of COVID-19 pandemic, the so-called SIR model. In
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the context of our economy, the SIR model is characterized by the following system:

I ′ = (1− γ) I + β

(
IS

N

)
,

S ′ = S − β

(
IS

N

)
+ ξR,

R′ = (1− ξ)R + [γI − φ (H)] ,

H = θI + ε,

N ′ = N − φ (H) .

SIR Model

(36a)

(36b)

(36c)

(36d)

(36e)

In these equations, R is the population that fully recovers from the disease and enters into the
economy again. In this variation of the SIR model, parameter ξ captures the rate at which the re-
covered population becomes susceptible to the disease again (which appears to be a characteristic
of SARS-CoV-2, as we note in footnote 9).

As discussed at the end of section 3.1 and, in detail, in section 3.2, the linearity of the law of motion
of infected population in (35a) is a critical condition for the tractability of the representation
equation. Otherwise, we cannot capture the planner’s beliefs by a well-behaved distribution any
longer, and the planner’s problem becomes numerically intractable as a result.

One standard approach in the optimal filtering literature to deal with such intractabilities—e.g.,
when dealing with a non-linear equation like (36a)—is to approximate the law of motion of state
by a linear one (and noise involved by a normal one). Another possibility is to approximate the
experimental beliefs by a Gaussian distribution in each period. In this paper, we take the first
approach, which forms the idea behind the extended Kalman filters.

Beside its technical necessity, one can argue that, in the period under consideration (that is the
starting months of the pandemic when uncertainty is at its peak), the SIS system provides a good
approximation of the SIR: If (i) the number of infected population does not exceed a threshold,
and (ii) the recovered population becomes susceptible in the near future, St/Nt remains reason-
ably close to unity. Consequently, one state variable drops out of the control system, and, more
importantly, equation (36a) can be approximated by a linear equation like that in (35a). The latter
plays a critical role in keeping the planner’s beliefs tractable throughout our analysis, as discussed
before.

In this section, we demonstrate that, under our parameters estimates, our “linearization” remains
an accurate one around the SIR model in the first three months of the COVID-19 pandemic, even
in the absence of mitigation. Given that our quantitative results focus on the initial months of
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the pandemic, we believe that our approximation remains reasonably accurate in addressing the
questions that are of interest to this study.

Figure 10 illustrates the evolution of infected population, resulting from simulating the two sys-
tems under our estimated parameter values of section 4.1, when ξ = 0, N0 = 100, I0 = 0.1 and
absent any mitigation measure. As one expects, and as panel (a) of the graph confirms, the SIS
model predicts a divergence of infected population, whereas, “herd immunity” is achieved in the
SIR model when I reaches a certain threshold. However, as panel (b) of figure 10 suggests, for
the initial three months of the pandemic, the SIS model provides a rather close approximation to
the SIR model.

We can expect this approximation to improve further with the introduction of mitigation mea-
sures (reducing the effective infection rate) and the possibility of reinfection (ξ > 0). Figure 11
demonstrates this by comparing the results of figure 10 to that when it takes 90 days, on average,
for a recovered individual to become susceptible to the disease again.

When restrictive mitigation policies are in place, the SIS model becomes quite a reasonable ap-
proximation to the SIR model, not just at the beginning of the pandemic. This point is demon-
strated in figure 12, where we have assumed a 30% lockdown policy in effect. As our discussions
in section 2 suggest, this is a lower bound for the fall in mobility, e.g., in Ontario, Canada. Even
for this conservative choice of mitigation policy, the SIS model remains a reliable approximation
to the SIR model until a year into the pandemic. As one can imagine, for stricter lockdown poli-
cies in effect—e.g., around the magnitudes mandated by an overreacting planner—the two models
converge.

At the end, it is worth emphasizing that such approximations are crucial and common in solving
optimal filtering problems. For instance, as Kushner and Dupuis (2014) explain, the linearization
introduced above uses the fundamental idea behind the Kalman filter, a rare occasion in which
the representation equation becomes tractable, and has been used extensively before in extended
Kalman filters.39

E An Alternative Timing

As discussed in footnote 18, an alternative to the timing considered in section 3.1 is to assume the
planner has to decide about κ and m simultaneously, and before observing the positivity rate, K .

39. See Einicke and White (1999), Huang, Mourikis, and Roumeliotis (2008), and Brown and Hwang (2012) for
discussions of extended Kalman filters and their properties.
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Figure 10. SIR vs SIS Models without Reinfection and Mitigation

Note. It is assumed that N0 = 100 and I0 = 0.1.
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Figure 11. SIR vs SIS Models with Reinfection

Note. It is assumed that N0 = 100, I0 = 0.1 and ξ = 1/90.
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Figure 12. SIR vs SIS Models with Mitigation

Note. It is assumed that N0 = 100, I0 = 0.1 and β̂ = 0.7β.
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Under this alternative timing assumption, the planning problems in (15) and (16) need to be com-
bined together as a single problem at the beginning of period as follows:

Vt

(
N,H = h,Qbeg ∼ N

(
µbeg, σbeg))

= max
(κ,m)∈[0,1]2

{
Nu ([Ω (m)w (N − h)− Λ (κN)] /N)

+ ρE
[
Vt+1

(
N − φ (h) , H ′,

(
Qbeg)′ ∼ N

((
µbeg)′ (K) ,

(
σbeg)′))]

}
, (37)

subject to

(
σbeg)′ = [1 +mΓ (κ) β − γ]




ζ (κ)

(
νσbeg√

θ2(σbeg)
2
+ν2

)

√
λ2

(
ν2(σbeg)

2

θ2(σbeg)
2
+ν2

)
+ ζ (κ)2



, (38)

(
µbeg)′ (K) = [1 +mΓ (κ) β − γ]



λk

(
ν2(σbeg)

2

θ2(σbeg)
2
+ν2

)
+

(
θh(σbeg)

2
+µbegν2

θ2(σbeg)
2
+ν2

)
ζ (κ)2

λ2

(
ν2(σbeg)

2

θ2(σbeg)
2
+ν2

)
+ ζ (κ)2


 , (39)

and the terminal condition

VT

(
N,H = h,Qbeg ∼ N

(
µbeg, σbeg)) = N

[
u

((
N − h

N

)
w

)
+ ρ

u (w)

(1− ρ)

]
, ∀Qbeg. (40)

The major difference between problem (37) and the planning problem in section 3.1 is that, now,
the expectation is with respect to the joint distribution of K and H ′. Noting that K and H ′

are independent random variables, we can use the law of iterated expectations to compute this
expectation in two stages: First, with respect to K , and, next, with respect to H ′ for each given
value of

(
µbeg

)′
(K) and

(
σbeg

)′.

Formally, we can write the expectations in (37) as

E
[
Vt+1

(
N − φ (h) , H ′,

(
Qbeg)′ ∼ N

((
µbeg)′ (K) ,

(
σbeg)′))]

= EK

[
EH′|K

[
Vt+1

(
N − φ (h) , H ′,

(
Qbeg)′ ∼ N

((
µbeg)′ (K) ,

(
σbeg)′))]

]
. (41)
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Using Bayes’ rule, the two probability distributions in (41) can be derived as

Pr (K = k) =




1

2

√
π
√

(σint)2 λ2 + ζ (κ)2


 · exp


−1

2


 k − λµint

√
(σint)2 λ2 + ζ (κ)2




2
 . (42)

and

Pr (H ′ = h′ | K = k) =




1

2

√
π
√(

(σbeg)′
)2

θ2 + ν2




× exp


−1

2


 h′ − θ

(
µbeg

)′
(k)√(

(σbeg)′
)2

θ2 + ν2




2
 . (43)

Solving problem (37) follows a similar procedure as the one used in solving (15) and (16). From
a numerical standpoint, however, this problem is easier to solve than the latter two from one
aspect, and harder, from another: First, since κ does not enter into (37) as a state variable and
since the planning problem involves only one stage, the current timing can be easier to handle.
On the other hand, the optimization step in problem (37) involves going over a two dimensional
grid. This makes the optimization step rather time-consuming.

It turns out that having one fewer state variables and one stage (instead of two) deems the cur-
rent timing easier to solve numerically than the one in section 3.1, for small values of T . Our
quantitative results remain more or less the same.

However, as T gets large and/or the control grid becomes finer, the fact that optimization is on
a 2D grid in this timing turns out detrimental to drawing reliable conclusions about the results
for the following reason: In this case, we take advantage of the graphical processing unit (GPU)’s
power to find the optimal policy in each step—using CUDA programming language. This is nec-
essary to be able to solve such a large-scale program with such a massive control grid.

As the control grid becomes finer, we no longer have enough internal memory in the GPU unit
to keep the policy function, in its entirety, in the unit. Our novel trick, in our benchmark timing,
is to compress and then offload the policy functions from the RAM to an external storage unit,
before moving to the next iteration. This, however, turns out to be extremely time consuming
when one wants to offload the policy from the GPU’s internal memory.

As T increases, something similar occurs: This time, the size of the external file holding the policy
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function gets out of hand, even at the maximum level of compression.

As such, our results in this section must be taken with some level of caution. In addition, we tend
to think of our timing in section 3.1 as a more reasonable description of what policymakers were
facing around the world during the COVID-19 pandemic.

F Structural Uncertainty

Our environment—as laid out in section 3—makes a strong assumption about the nature of un-
certainty: That the planner is uninformed about the “state” of the economy and the disease, while
is certain about the “structure” of both.

While this assumption enables us to focus on the role of testing as an information instrument, it
abstracts from the reality that most policymakers were quite uncertain about the nature of the
SARS-CoV-2 virus at the onset of the pandemic. This, above all, included uncertainty about the
infection rate which was much debated (at least) up to the point when COVID-19 was declared a
global health crisis a few months after the first cases were diagnosed.

The advantage of this simplification is that, without it, our model becomes numerically intractable
given our available computational resources. On the downside, neglecting the structural uncer-
tainty can well explain part of the policy reaction to the pandemic at its onset, either reinforcing
or negating our results in section 4.

To investigate this possibility, in this appendix, we present a version of the model in which un-
certainty is about the infection rate, β, rather than the state of the economy. The planner has to
form and adjust her beliefs about the true infection rate based on the observed evolution of the
infected population in the economy which is, now, contaminated by noise. In the next subsection,
we investigate the implications of this structural uncertainty for optimal policy

Consider the same baseline environment as in section 3, but, now, assume that β can be an element
of the set B := {βL, βH}, where βL < βH . To capture the planner’s beliefs, we denote her
perceived chances of β = βH by π.

Unlike our baseline economy, the planner perfectly observes the infected population It in each
period t. As such, testing no longer plays an informational role in our economy, and is consol-
idated by other mitigation measures as a single instrument which we keep denoting by m. We
assume, as before, that m ∈ [0, 1], where m = 0 indicates a full shutdown of the economy. We
capture the cost of consolidated mitigation by function Ω (·), with a slight abuse of notation.
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Given the true value of β and the mitigation policy m, the law of motion of infection is given as

It = (1 +m · β − γ) · It−1 + εt, (44)

where εt is an independently and identically distributed noise with mean zero, whose distribution
is captured by G (·)

Here, we assume that fraction θ of the infected population ends up in hospitals in each period
with certainty. Of this population, some succumb to the disease by the end of the period. This
fatality function is given by

φ (I) = min
{
φ1 · (θI) + φ2 · (θI)2 , θI

}
. (45)

We assume the remainder of the economy to be similar to that of section 3. The timing of the
problem is as follows: At the beginning of period t, the planner observes the infected population
It, and updates her beliefs accordingly. Next, she makes a mitigation decision, mt, based on which
production and consumption take place. At the end of the period, φ (It) of the infected die and
leave the economy forever.

The Planner’s Problem

As in our baseline model, the choice of the stage within a period in which we choose to write
the planning problem has a bearing on the number of state variables in the planning problem. To
economize on the number of states, we consider the planning problem after the realization of It
and after the beliefs, π, have been updated accordingly.

This problem can be written as

Vt (Nt, πt, It) = max
mt∈[0,1]

{
Nt · u (Y/Nt) + ρ · E [Vt+1 (Nt − φ (It) , πt+1 (It+1) , It+1)]

}
(46)

s.t. Y = Ω(mt) · w · (Nt − θIt) .

The expectation in problem (46) is with respect to the number of infected in t+1. Since π in this
formulation represents beliefs after observing the infected population, it is written as a function
of It+1 to emphasize its dependence on the received signal. This dependence is determined by
Bayes’ theorem as

πt+1 (It+1) =
πt · Pr (It+1 = i | β = βH , It)

(1− πt) · Pr (It+1 = i | β = βL, It) + πt · Pr (It+1 = i | β = βH , It)
. (47)
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Figure 13. Initial Value as Function of Infected Population

A Numerical Example

As in the baseline model, finding a closed-form solution to (46) is not possible. Therefore, in
this section, we discuss the properties of the solution via a numerical example, similar to that in
section 4.

To this end, we use the same parameter values for the utility function, discount rate, fatality
function and openness function as those in section 4. We assume G (·) ∼ N (0, ν). We assume a
baseline value of ν of 0.03, but also check the robustness of our results for ν = 0.1 and ν = 0.3.
We set βL = 0.091 and βH = 0.191, and choose γ, θ, w and T before.40

Figure 13 illustrates the initial value function, V0 (N = N0, π, I0), for three different values of π0,
as functions of initial infected population, I0. One must note that, unlike the value function in
our baseline model, I0 is observed perfectly, and π0 represents the probability that the planner
assigns to β = βH after the realization of I0.

As the figure suggests, the value demonstrates the same convexity in the number of infected as

40. Note that, unlike our parametrization in section sec:quant, these parameter values are not estimated, but picked
intuitively for the sake of demonstration.
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that in the baseline model. As such, like before, everything else the same, the planner prefers
a mean-preserving spread over the infected population over a certain outcome. In the current
setting, however, uncertainty about the future realizations of I stem from two sources: Structural
uncertainty about the underlying infection rate (captured by π), and the signal noise (as captured
by ν).

As such, mitigation in this setting has two opposing effects on the future uncertainty. First,
depending on the relationship between βL and βH , and the distribution of noise, ε, less mitigation
(m closer to one) can help eliminate uncertainty faster than more strict mitigation measures (m
closer to zero).

To see this most clearly, suppose βL ≪ βH . Then, m = 1 can effectively separate βL from βH in
a single period, if the variance of ε—implied by G (·)—is so small that

Pr
(
I < I ′ | I, β = βL,m = 1

)
,Pr

(
I ′ < I | I, β = βH ,m = 1

)
< υ,

for some arbitrarily small υ > 0. On the other hand, if m = 0, then

Pr
(
I ′ = I | I, β = βL,m = 0

)
= Pr

(
I ′ = I | I, β = βH ,m = 0

)
,

under the same assumptions.

This can also be seen in the updating equation, equation (47): When either Pr (i′ | β = βL, I) or
Pr (i′ | β = βH , I) is zero, then π′ is either equal to one or zero. (Note that π = 1/2 implies the
highest uncertainty in this environment.) Therefore, less mitigation can quickly resolve uncer-
tainty by pushing π′ towards either zero or one.

However, less mitigation implies rather large uncertainty about the infected population in the
immediate future. To see this, suppose π is close to 1/2. Then, with m = 1, the distribution of I ′

becomes a bimodal distribution—an equally weighted sum of two normal distributions with the
same variances but distinct means. With m = 0, however, I ′ | I = i ∼ N ((1− γ) i, ν).

As such, in choosing the optimal mitigation, the planner has to balance these two opposite in-
centives, against the standard trade-off that exists between the cost of allowing the virus to prop-
agate versus the cost of mitigation. (One must note that the preceding arguments are under the
assumptions of a rather small ν and βL ≪ βH .)

Figures 14 and 15 demonstrate the time-path of optimal policy, mt, and the corresponding path
of infected population and beliefs, assuming that the true infection rate is βH and βL. In both
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cases, it is assumed that the initial infected population is I0 = 0.1, and ν = 0.03.41 When
β = βH , the higher π0, the more accurate the planner’s beliefs are. As such, the solid black
line indicates the simulation results under “near-perfect” information. As the dashed blue line
in Panel (c) illustrates, high structural uncertainty in this case implies an initial under-reaction,
followed by a rather prolonged mitigation. This prolonged reaction appears to be a response to a
rapid propagation of the infection due to the initial lack of action.

The under-reaction itself seems to be driven mostly by the perceived low cost of inaction, rather
than a preference for ignorance. The dash-dotted orange line in Panel (c) supports this: As the
initial beliefs—incorrectly—assign more weight to βL, planner’s initial inaction becomes more
pronounced, followed by a more severe and more prolonged mitigation compared to both π0 =

0.9 and π0 = 0.5 cases.

The preceding arguments entirely reverse once the true underlying state is βL: Here, π0 = 0.1

indicates near-perfect information (also illustrated by solid black lines in 15). In this case, an
initially misplaced belief on β = βH implies a significant overreaction, followed by a relatively
rapid re-opening of the economy. An interesting observation is that, significant uncertainty in
this case (π0 = 0.5) also implies a “rush to reopening,” compared to incorrect initial beliefs (π0 =

0.9). This result is consistent with Glover et al. (2020)’s criticism of the optimal policy in the U.S.

41. Our results are robust to greater choices for I0 and/or ν.
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Figure 14. Time-Path of Policy, and Infected Population and Beliefs under
Optimal Policy when β = βH

Note. It is assumed I0 = 0.1, ν = 0.03 and εt = 0 for all t. Only the first 310 days are drawn. It is assumed
that the true infection rate is βH . Therefore, greater π0 indicates more accurate beliefs. Discontinuities in
optimal paths are artifacts of relatively coarse discrete grids.
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Figure 15. Time-Path of Policy, and Infected Population and Beliefs under
Optimal Policy when β = βL

Note. It is assumed I0 = 0.1, ν = 0.03 and εt = 0 for all t. Only the first 310 days are drawn. It is assumed
that the true infection rate is βL. Therefore, smaller π0 indicates more accurate beliefs. Discontinuities in
optimal paths are artifacts of relatively coarse discrete grids.
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